Mechanical response of silk crystalline units from force-distribution analysis.
نویسندگان
چکیده
The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.
منابع مشابه
Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk
The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) s...
متن کاملSilk fiber mechanics from multiscale force distribution analysis.
Here we decipher the molecular determinants for the extreme toughness of spider silk fibers. Our bottom-up computational approach incorporates molecular dynamics and finite element simulations. Therefore, the approach allows the analysis of the internal strain distribution and load-carrying motifs in silk fibers on scales of both molecular and continuum mechanics. We thereby dissect the contrib...
متن کاملDesign of superior spider silk: from nanostructure to mechanical properties.
Spider dragline silk is of practical interest because of its excellent mechanical properties. However, the structure of this material is still largely unknown. In this article, we report what we believe is a new model of the hierarchical structure of silk based on scanning electron microscope and atomic force microscope images. This hierarchical structure includes beta-sheet, polypeptide chain ...
متن کاملHigh-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope
Atomic force microscopes have become indispensable tools for mechanical characterization of nanoscale and submicron structures. However, materials with complex geometries, such as electrospun fiber networks used for tissue scaffolds, still pose challenges due to the influence of tension and bending modulus on the response of the suspended structures. Here we report mechanical measurements on el...
متن کاملMultiscale mechanisms of nutritionally induced property variation in spider silks
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 96 10 شماره
صفحات -
تاریخ انتشار 2009